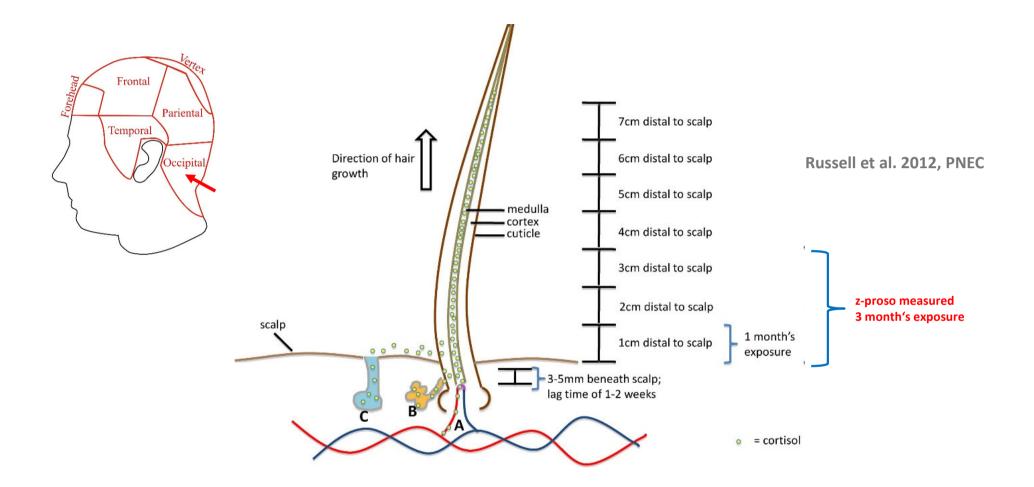

What Can We Expect and What Not from Hair Analysis in the Context of Longitudinal Cohort Studies?

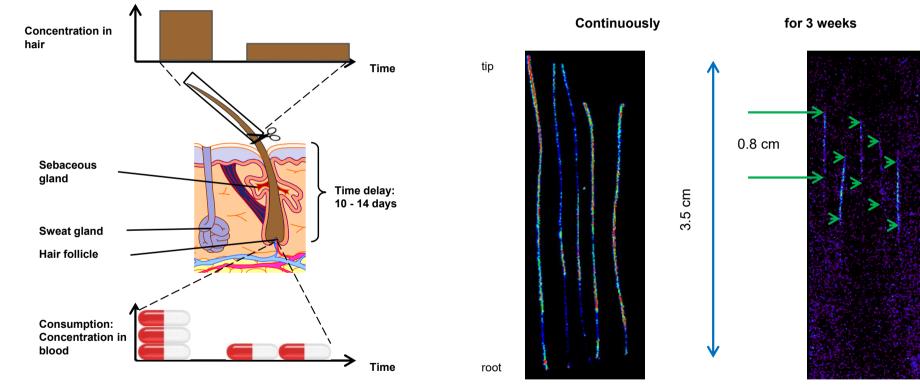
Boris B. Quednow

Experimental Pharmacopsychology and Psychological Addiction Research Department of Adult Psychiatry and Psychotherapy University Hospital of Psychiatry Zurich, University of Zurich

Acute influence:	Blood, Breath, Oral Fluid
Short-time consumption:	Blood, Oral Fluid, Urine, Sweat
Long-time consumption:	Hair, Nail

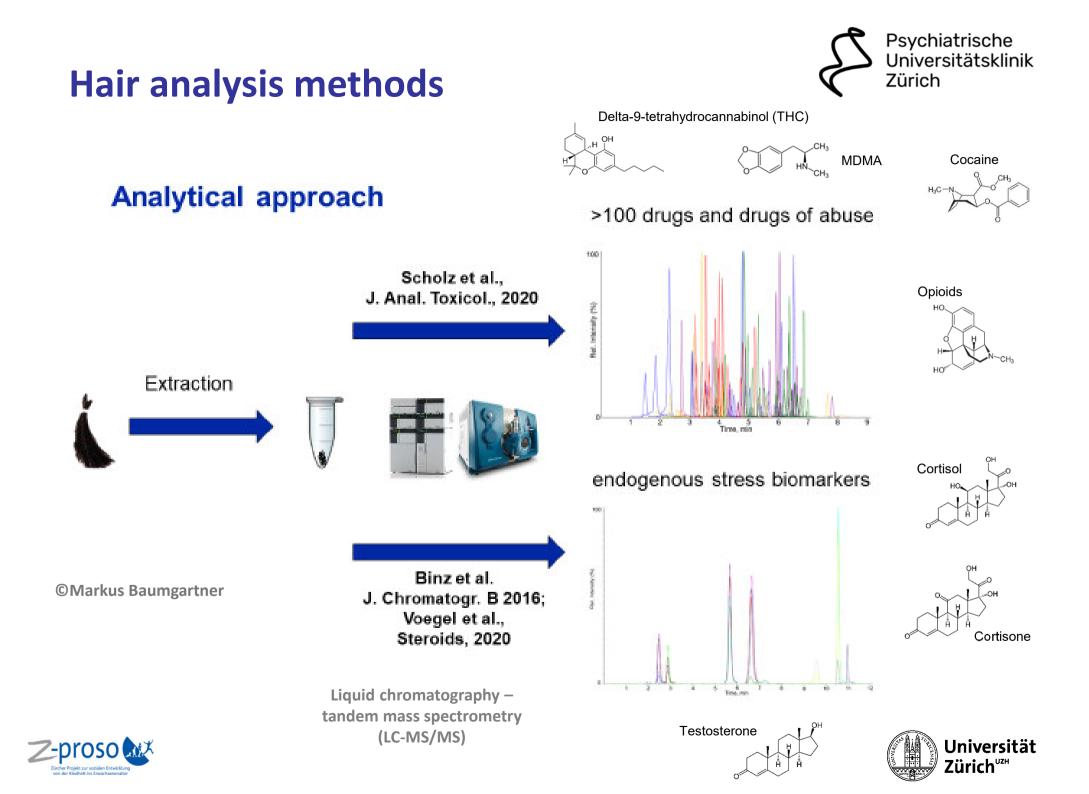

→ Hair analysis can provide an estimate of cumulative exposure to pharmacological active compounds and endogenous release of hormones and other biological substrates.

Detection windows in hair samples


→ Hair analysis can usually detect alkaline or lipophilic molecules not larger than 1-2k Dalton molecular mass.

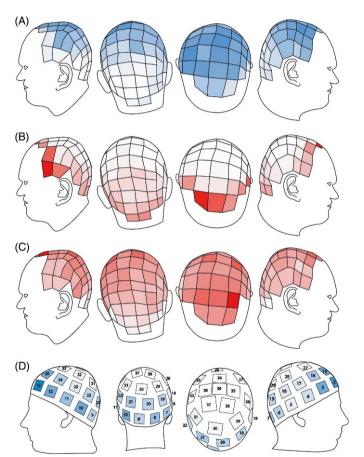
Incorporation in hair after substance intake

Zolpidem intake


Binz & Baumgartner 2020, Kriminalistik

Poetzsch, Baumgartner et al. Anal. Chem. 2014

©Markus Baumgartner



- Solid, inhomogeneous material

- Easy sample collection
- Various incorporation mechanism, contamination
- Biased with hair color
- Adulteration or alteration
 by cosmetic treatment
- Head hair can be removed
 - \rightarrow Solutions:
 - Standardized sampling protocol
 - Sophisticated crushing and extraction of the hair

A: ethyl glucuronide (EtG, alcohol marker) conc.B: cocaine conc.C: skin perfusionD: sweating rate

©Markus Baumgartner

Maier et al. 2017, Drug Test Anal

- Solid, inhomogeneous material

- Easy sample collection ???
- Various incorporation mechanism, contamination
- Biased with hair color
- Adulteration or alteration by cosmetic treatment
- Head hair can be removed

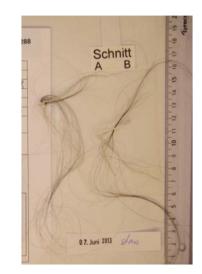
Solution:

protocol

Standardized sampling

Body hair

Arm


Chest Leg Beard

 \rightarrow

Schnitt ABC 33.43 mg

33.33 mg

Scalp hair

Unusable: far too thin Proximal end?

©Markus Baumgartner

Solid, inhomogeneous material Cocaine Benzoylecgonine

- Easy sample collection
- Various incorporation
 mechanism, contamination
- Biased with hair color
- Adulteration or alteration
 - by cosmetic treatment
- Head hair can be removed

→ Solutions:

- Decontamination in the lab (washing)

Disadvantages and pitfalls of hair sampling

- Measuring metabolites
- Use of metabolite ratios

Final amounts of cocaine in decontaminated hair

= 13Ce-Cocaine

Table II. Proposed cut-off values, sensitivity, specificity and AUCafter ROC analysis of the data from cohort 1 (*in vivo* study) andthe cohort 2 (self-reported COC use)

Metabolic ratio	AUC	Proposed cut-off	Sensitivity	Specificity
BE/COC	0.91	0.05	1.0	0.10
BE/COC	0.91	0.10	1.0	0.57
NC/COC	0.90	0.01	0.99	0.71
CE/COC	0.95	0.02	0.70	1.0
p-OH-COC/COC	1.0	0.001	0.98	1.0
m-OH-COC/COC	0.99	0.001	0.97	0.90
p-OH-BE/COC	1.0	0.0002	1.0	1.0
m-OH-BE/COC	1.0	0.0002	0.99	1.0

AUC, area under the curve; BE, benzoylecgonine; CE, cocaethylene; COC, cocaine; m-OH-BE, meta hydroxybenzoylecgonine; m-OH-COC, meta hydroxycocaine; NC, norcocaine; p-OH-BE, para hydroxybenzoylecgonine; p-OH-COC, para-hydroxycocaine.

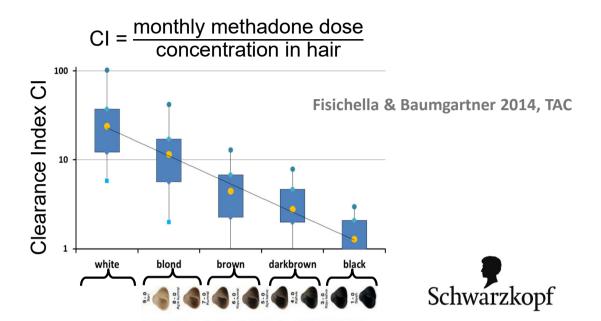
Scholz et al. 2019, J Anal Toxicol

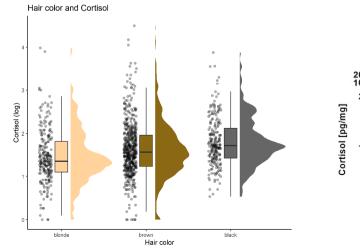
Psychiatrische Universitätsklinik

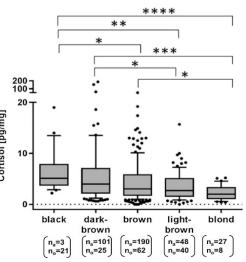
Benzoylecgonine

¹³C₆-Benzoylecgonine

Zürich


©Markus Baumgartner




- Solid, inhomogeneous material
- Easy sample collection
- Various incorporation
 mechanism, contamination
- Biased with hair color
- Adulteration or alteration
 by cosmetic treatment
- Head hair can be removed
 - \rightarrow Solutions:
 - Consider hair color as a potential (or established) confounder in your statistical model

©Markus Baumgartner

z-proso: © Johnson-Ferguson

Binz et al 2018, Forensic Sci Int

- Solid, inhomogeneous material
- Easy sample collection
- Various incorporation mechanism, contamination
- Biased with hair color
- Adulteration or alteration
 - by cosmetic treatment
- Head hair can be removed

Cosmetic treatment:

Linear regression models predicting glucocorticoids, adjusting for sex.

	Cortisol (log)				
	β	CI	р		
Hair factors					
Hair bleaching	0.06	-0.01 - 0.12	.109		
Hair colour (reference: brown hair)					
Blonde hair	-0.12***	-0.19 0.06	< .001		
Black hair	0.12***	0.05-0.18	< .001		
Hair colouring	0.05	-0.03 - 0.12	.217		
Hair tint	0.04	-0.03 - 0.11	.228		
Hair washing frequency	-0.05	-0.13-0.02	.137		
Hair straightening	0.02	-0.04-0.09	.492		
Sweating intensity	0.08*	0.01 - 0.14	.019		
Collection calendar week	0.15***	0.09-0.22	< .001		

 \rightarrow Solutions:

- Consider hair treatments as a potential (or established) confounders in your statistical model
- May exclude bleached or strongly heated hair samples

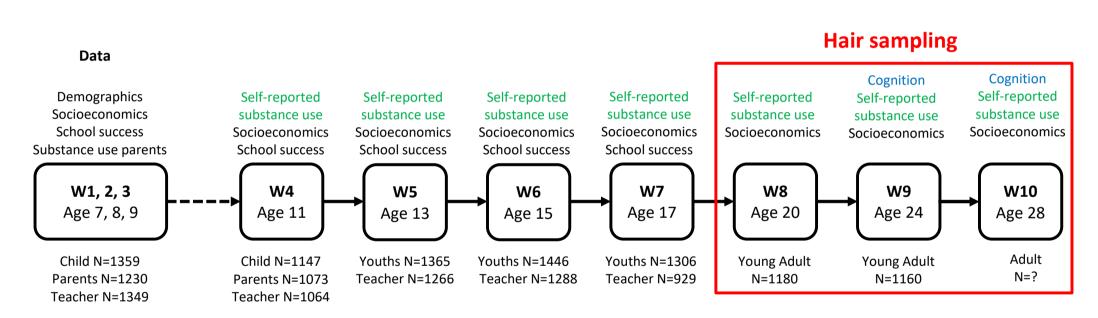
©Markus Baumgartner

Johnson-Ferguson et al. 2023, PNEC

- Solid, inhomogeneous material
- Easy sample collection
- Various incorporation
 mechanism, contamination
- Biased with hair color
- Adulteration or alteration
 by cosmetic treatment
- Head hair can be removed

- \rightarrow Solutions:
- Use body hair

Body hair


- Arm
- Chest
- Leg
- Beard

Hair sampling in z-proso

Assessments

Ribeaud et al 2022, J Dev Life Course Criminology

Voluntary hair sampling in z-proso

z-proso wave 8 hair sampling (age 20)

- 1180 participants (of max. N=1675)
 on-site: n = 1142
 - online: n = 38
- 1016 agreed to provide a sample
- 1003 samples have been collected
 → 928 were head hair
- → 89% agreed (of on-site participants)

z-proso wave 9 hair sampling (age 24)

- 1160 participants (of max. N=1675)
 on-site: n = 987
 - online: n = 173
- 894 agreed to provide a sample
- 887 samples have been collected
 → 794 were head hair
- \rightarrow 91% agreed (of on-site participants)

 \rightarrow 761 participants gave hair sample in both waves (age 20 and 24).

Hair sampling in z-proso wave 8, 9, (and 10)

• We assay about 100 substances in hair samples

Steroids
Cortisol
Cortisone
Testosterone

Cannabinoids Tetrahydrocannabinol Cannabinol Cannabidiol

Steroid hormones, medications, and illegal substances

Stimulants
Cocaine
Benzoylecgonine*
Norcocaine*
Cocaethylene*
OH-Cocaine*
OH-Benzoylecgonine*
Amphetamine
Methamphetamine
MDMA
MDA*
MDEA
Methylphenidate
Modafinil
Atomoxetine
4-Fluoroamphetamine (4-FA)
Hallucinogens
2С-В

Ketamine

Norketamine*

*Metabolites

Opiates/Opioids
Morphine ^(*)
Acetylmorphine
Hydromorphon
Acetylcodeine
Codeine
Hydrocodon
Dihydrocodeine
Oxycodon
Oxymorphon
Fentanyl
Norfentanyl*
Pethidin
Tapentadol
Tilidin
Tramadol
N-Desmethyltramadol *
Dextromethorphan
Substitution drugs
Methadone

EDDP* Buprenorphine

Norbuprenorphine*

Hair sampling in z-proso wave 8, 9, (and 10)

• We assay about 100 substances in hair samples

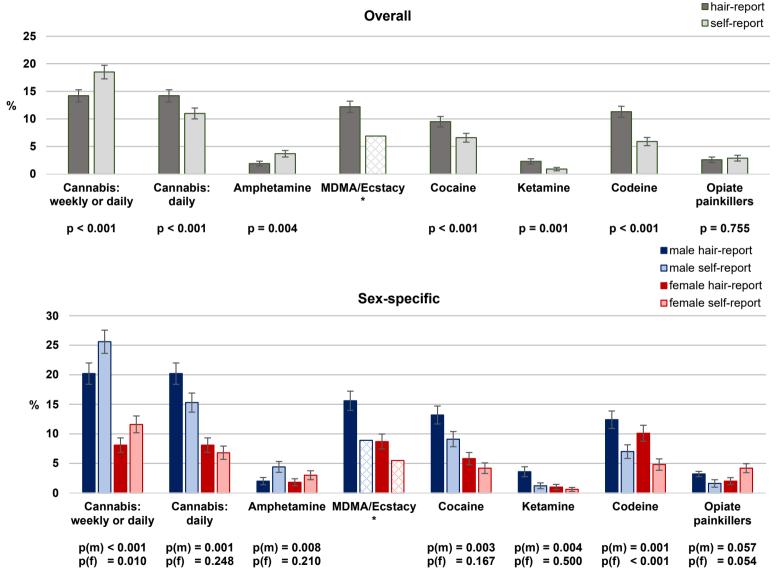
Z-Hypnotics	Antidepressants	Antipsychotic drugs	Benzodiazepines
Zalepion	Agomelatine	Amisulprid	Alprazolam
Zolpidem	Amitriptyline	Aripiprazol	Bromazepam
Zopiclon	Nortriptyline	Asenapine	Clobazam
-	Bupropione	Chlorprothixen	N-Desmethylclobazam*
Miscellaneous	Citalopram	Clozapine	Clonazepam
Clomethiazol	Clomipramine	Haloperidol	7-Aminoclonazepam*
Diphenhydramine	Doxepine		Demoxepam*
Doxylamine	Duloxetine	Levomepromazine	Diazepam
Tizanidin	Fluoxetine	Olanzapine	Nordazepam*
	Fluvoxamine	Pipamperon	Oxazepam
Analgesic/Migraine drugs	Imipramine	Promazine	Temazepam
Diclofenac	Mirtazapine	Quetiapine	Flunitrazepam
Metamizol-Metabolite*	Opipramol	Norquetiapine*	7-Aminoflunitrazepam*
Naratriptan	Paroxetine	OH-Quetiapine*	Flurazepam
Paracetamol	Sertraline	Risperidone	N-Desalkylflurazepam*
Sumatriptan	Trazodon	OH-Risperidone*/Paliperidon	Lorazepam
	m-CPP*	On-Rispendone // anpendon	Lormetazepam*
Antiepileptics	Trimipramine	*Metabolites	Midazolam
Pregabaline	Venlafaxine		α-Hydroxymidazolam*
Flunarizin	O-Desmethylvenlafaxine*		Nitrazepam
Gabapentine		I	7-Aminonitrazepam*
Lamotrigine			Phenazepam

Psychiatric medications

Prazepam

Tetrazepam Triazolam

Hair sampling questionnaire in z-proso


- In an additional questionnaire we assessed in participants with hair sampling:
 - Natural hair colour
 - Hair treatments (e.g., bleaching, tinting, colouring, straigthening)
 - Hair washing intensity
 - Sweating intensity at the head
 - Sport intensity (h per week, total intensity)
 - UV exposure of the head (e.g., usual wearing a hat or cap, solarium visits).
 - Illness (symptoms of a cold, headache, pain, lung infection, COVID) in the last 3 months
 - Intake of contraceptives in the last 3 months (different types)
 - Intake of prescribed or over-the counter medications in the last 3 months (e.g., pain killers, cough medication, sedatives, hypnotics)
 - Corticoid intake in the last 3 months

Subjective and objective 3-months prev. in W8

N=1001/1002

Hair data on codeine and opioids corrected for medical use. For MDMA/ecstasy, 3-month-self-reports were not available and the self-report prevalence was therefore estimated

Steinhoff et al. 2023, J Am Acad Child Adolesc Psychiatry

Concordance of hair and self-report in W8 and W9

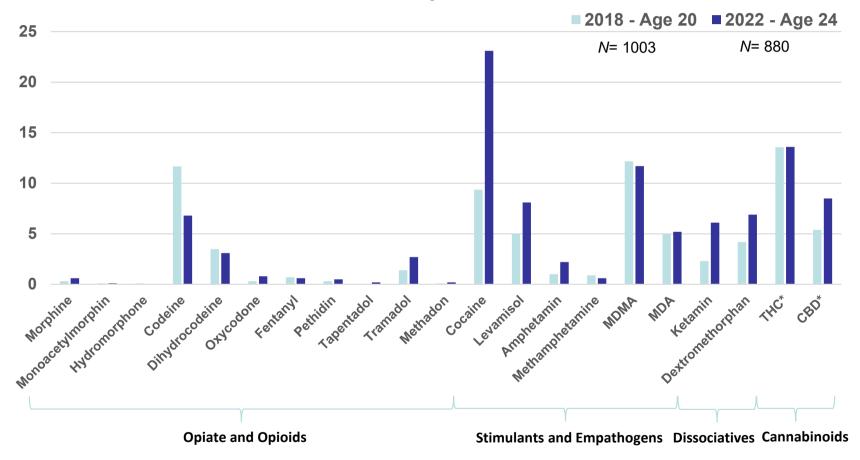
Comparison of Self-Reports and Hair Toxicology Analyses: Substance Use during the Previous Three Months for Waves 8 and 9 with the Full Sample.

Wave	Substances	Sample sizeª	Positive hair test % (n)	Positive self- report % (n)	Detection ratio	Agreement	Kappa [⊳]	Hair test specificity	Hair test sensitivity	Balanced accuracy hair test	Self-report specificity	Self-report sensitivity	Balanced accuracy self-report
W8	Cannabis weekly or daily ^c	1,001	14.2 (142)	18.6 (186)	0.76	90.4	0.65	96.8	62.4	79.6	91.9	81.7	86.8
W9	Cannabis weekly or daily ^c	759	14.0 (106)	16.5 (125)	0.85	90.9	0.65	96.1	64.8	80.5	93.3	76.4	84.9
z-test			-0.12	-1.14	0.21	0.36	-0.13	-0.79	1.04	0.44	1.10	-2.72**	-1.16
W8	Cannabis daily ^c	1,001	14.2 (142)	11.1 (111)	1.28	91.7	0.63	93.6	76.6	85.1	97.0	59.9	78.5
W9	Cannabis daily ^c	759	14.0 (106)	10.8 (82)	1.29	91.3	0.60	93.4	74.4	83.9	96.8	57.5	77.2
z-test			-0.12	-0.20	0.01	-0.30	-1.07	-0.17	-1.07	-0.69	-0.24	-1.01	-0.65
W8	Amphetamines	1,002	1.9 (19)	3.7 (37)	0.51	96.6	0.38	99.2	29.7	64.5	97.4	57.9	77.7
W9	Amphetamines	760	2.4 (18)	2.6 (20)	0.90	97.4	0.46	98.8	45.0	71.9	98.5	50.0	74.3
z-test			0.72	-1.29	0.99	0.97	3.50***	-0.85	6.61***	3.31***	1.59	-3.30**	-1.66
W8	MDMA/Ecstasy ^d	1,002	12.2 (122)	7.2 ^d	1.70 ^d	—	—	—	—	—	—	—	_
W9	MDMA/Ecstasy	761	12.1 (92)	5.8 (44)	2.09	92.4	0.54	92.6	88.6	90.6	99.3	42.4	70.9
z-test			-0.06	-1.17	0.60	—	_	—	_	—	—	_	_
W8	Cocaine	1,001	9.4 (94)	6.6 (66)	1.42	93.6	0.57	95.1	72.7	83.9	98.0	51.1	74.6
W9	Cocaine	760	22.8 (173)	9.2 (70)	2.47	84.3	0.44	83.9	88.6	86.3	98.6	35.8	67.2
z-test			7.76***	2.02*	1.61	-6.33***	-5.41***	-7.85***	8.20***	1.37	0.95	-6.40***	-3.38***
W8	Ketamine	1,002	2.3 (23)	0.9 (9)	2.56	98.2	0.43	98.4	77.8	88.1	99.8	30.4	65.1
W9	Ketamine	760	6.2 (47)	1.7 (13)	3.62	95.3	0.38	95.3	92.3	93.8	95.3	74.5	84.9
z-test			4.15***	1.50	1.29	-3.51***	-1.99*	-3.82***	8.23***	4.05***	-6.46***	18.34***	9.34***
W8	Codeine ^e	1,002	11.3 (113)	5.9 (59)	1.92	88.6	0.28	91.1	49.2	70.2	96.6	25.7	61.2
W9	Codeine ^e	760	7.5 (57)	3.7 (28)	2.04	92.5	0.30	94.1	50.0	72.1	98.0	24.6	61.3
z-test			-2.67**	-2.11*	0.18	2.74**	0.60	2.35*	0.33	0.87	1.77	-0.53	0.06
W8	Opioid painkillers ^e	1,001	2.6 (26)	2.9 (29)	0.90	95.9	0.23	98.0	24.1	61.1	97.7	26.9	62.3
W9	Opioid painkillers ^e	759	3.8 (29)	6.3 (48)	0.60	92.2	0.20	97.2	18.8	58.0	94.7	31.0	62.9
z-test			1.43	0.36	-0.71	-3.32***	-1.97*	-1.10	-2.67**	-1.29	-3.35***	1.88	0.24

^a Includes cases with valid data from both hair samples and self-reports.

^b Interpretation: 0.00 poor; 0.00-0.20 slight; 0.21-0.40 fair; 0.41-0.60 moderate; 0.61-0.80 substantial; 0.81-1.00 almost perfect. [1]

^c Hair toxicology analysis can generally only identify heavy use of cannabis[2]. These tests indicate the level of exposure rather than how often the substance was used, leaving the exact time period for self-reported use unclear. Consequently, we compare hair analysis results with self-reported frequent cannabis usage, maintaining the categories of weekly to "daily use vs less/no use" and "daily use vs less/no use."


^d MDMA/ecstasy three-month self-reports at W8 were not available, thus the prevalence was estimated (see Methods for details); data based on estimated prevalence are provided in italics. ^e Corrected for self-reported medical use.

^f Refined sample with hair from scalp, weighed portion 5 mg and hair length 3 cm.

Janousch et al., resubmitted, EAR

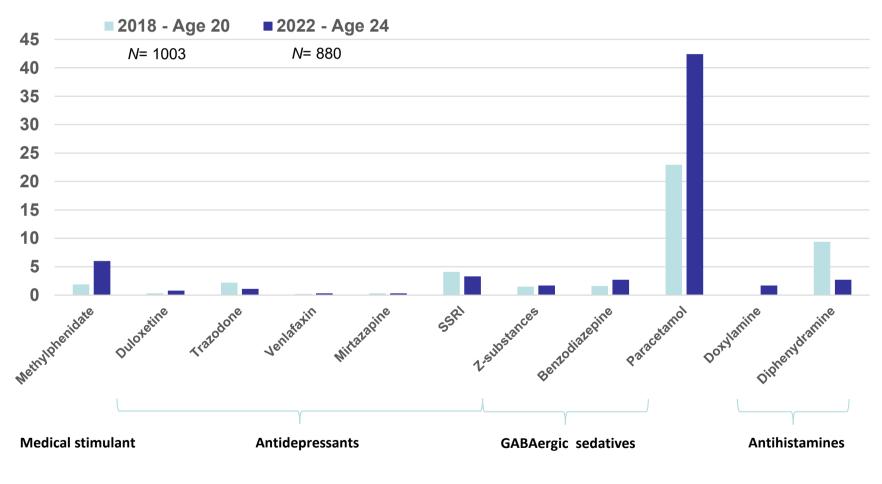
Substance use among young adults – 3-months hair analysis

Substances positive in %

Steinhoff et al 2023, J Am Acad Child Adolesc Psychiatry

2022 data unpublished

*reflecting only highly regular use



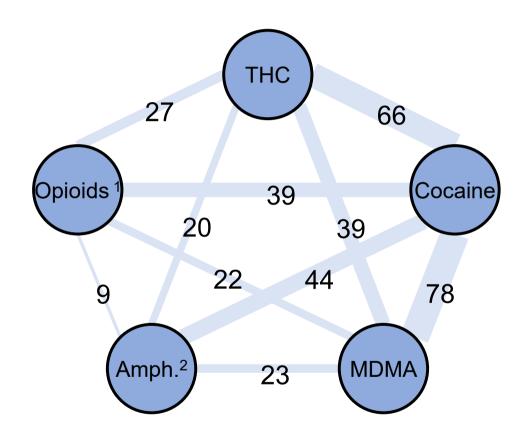
Psychiatrische Universitätsklinik

Zürich

Medication use among young adults – 3-months hair analysis

Medications in %

Paracetamol age 20: Johnson-Ferguson et al 2024, Arch Tox



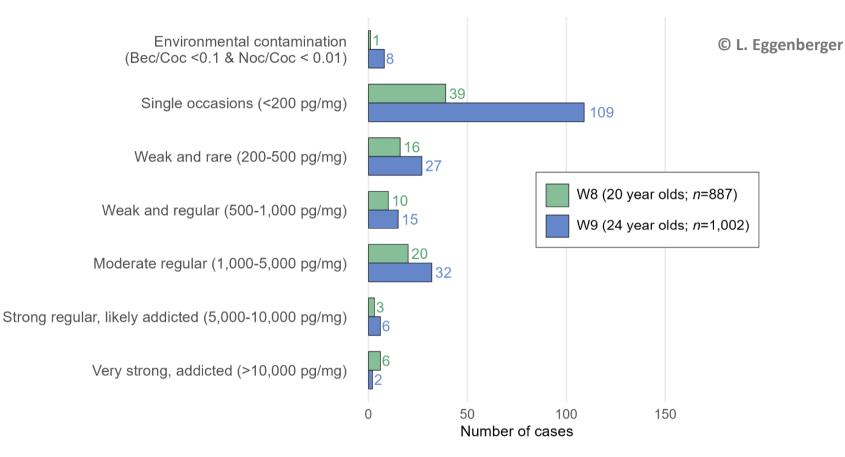
Rest of the data unpublished

A substance in hair rarely comes alone

Wave 9 (age 24, *n*=887)

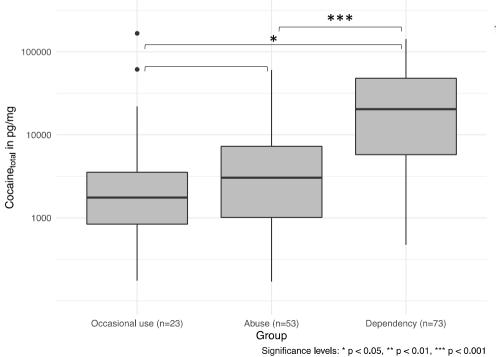
n (%)	Users	Pure users
ТНС	122 (13.8)	35 (3.9)
Cocaine	205 (23.1)	65 (7.3)
MDMA	104 (11.7)	15 (1.7)
Opioids ¹	107 (12.1)	55 (6.2)
Amph. ²	72 (8.1)	24 (2.7)

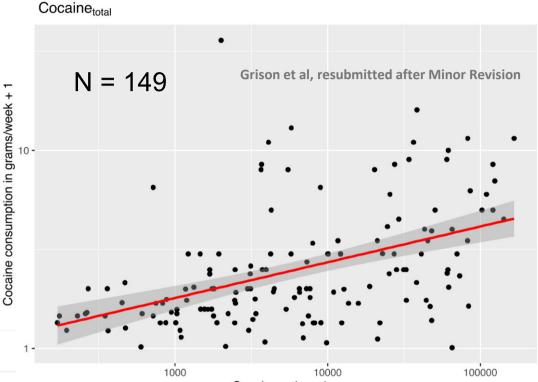
¹ Codeine, opioid painkillers, and heroin


² (Meth-)amphetamine and medical stimulants (e.g., ADHD medication)

Intensity of cocaine use in z-proso

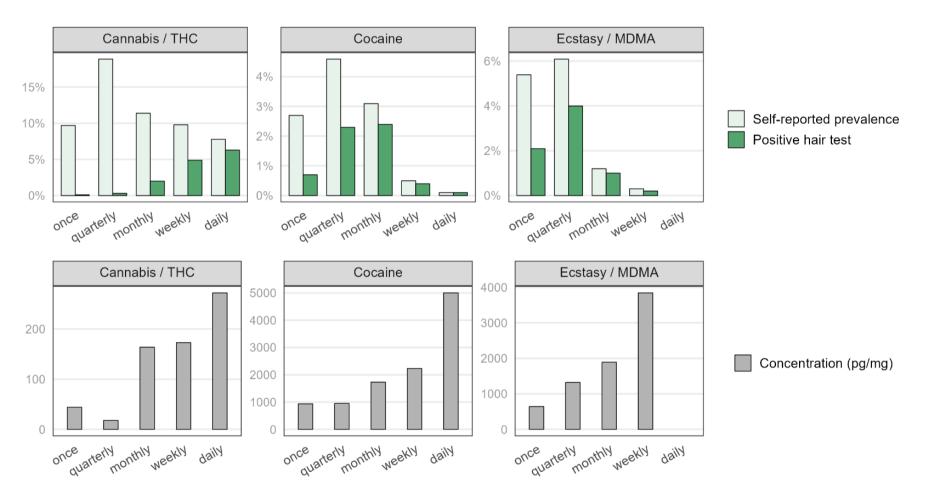
- 5-6% of cocaine users develop addiction in the first year of use, while 15-21% develop addiction during lifetime. (Wagner and Anthony 2002, Lopez-Quintero et al 2011, Degenhardt and Hall 2012)
- In z-proso, 94 of 1003 (9.4%, age 20) and 191 of 887 (21.5%, age 24) were tested confirmed positive for cocaine, from which 29 and 40 participants (30.8% and 20.9% of the users), respectively, showed at least moderate regular use including 9 and 8 individuals, respectively, who were likely addicted at test date.




Cocaine hair conc. can predict severity of use

Robust correlation between cocaine_{total} (sum of cocaine and metabolites) hair concentration and self-reported cocaine use in g/week

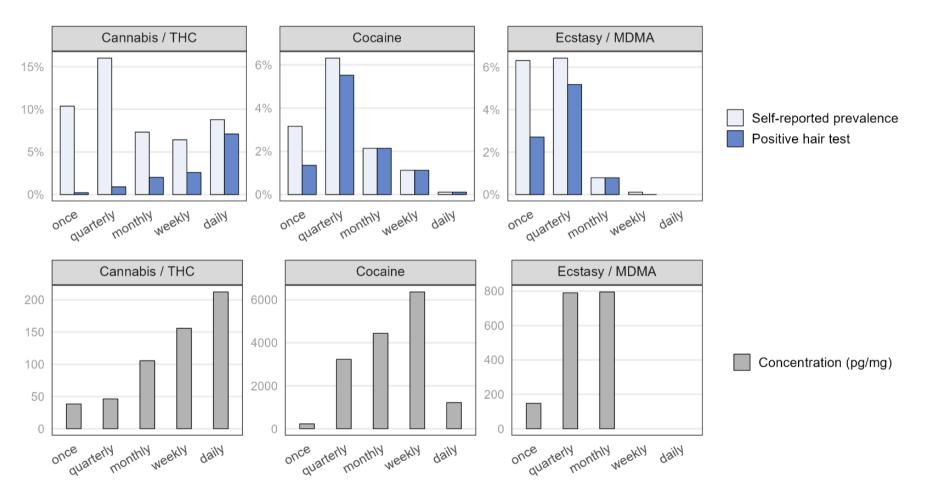
(r_{cocainetotal}=0.47, p<0.001), indicating that 1000 pg/mg cocaine_{total} corresponded to a use of 0.80 g/week (confidence interval (95%): 0.56-1.07 g/week).


Cocaine_{total} hair concentration predicted cocaine dependency (according DSM-IV) with a **sensitivity** of 0.79, a specificity of 0.65, and a balanced accuracy 0.72 (threshold 0.5), suggesting its capacity to distinguish dependent from nondependent cocaine users.

Self-report vs. hair in z-proso: dose effects

Wave 8 (age 20, *n*=1,002)

 \rightarrow Hair analysis can usually detect only highly regular cannabis use (weekly to daily).



Self-report vs. hair in z-proso: dose effects

Wave 9 (age 24, n=887)

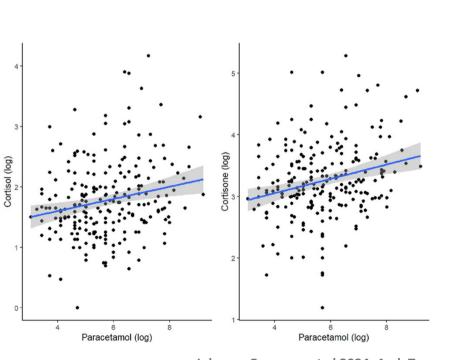
Specific predictors of hair cortisol in z-proso

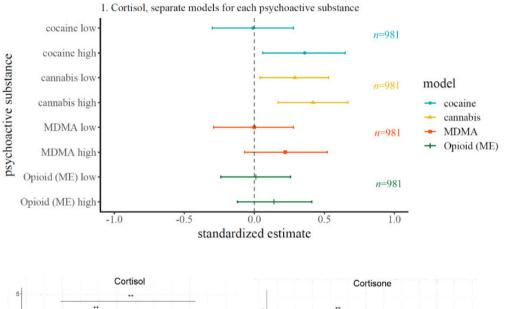
Linear regression models predicting glucocorticoids, adjusting for sex.

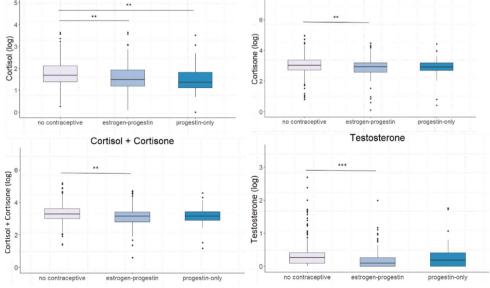
	Cortisol (log)			Cortisone (lo	g)	
	β	CI	р	β	CI	р
Hair factors						
Hair bleaching	0.06	-0.01-0.12	.109	-0.02	-0.09-0.04	.494
Hair colour (reference: brown hair)						
Blonde hair	-0.12***	-0.19 0.06	< .001	-0.03	-0.09–0.04	.406
Black hair	0.12***	0.05 - 0.18	< .001	0.13***	0.07-0.19	< .001
Hair colouring	0.05	-0.03–0.12	.217	-0.03	-0.10–0.04	.412
Hair tint	0.04	-0.03–0.11	.228	0.00	-0.07–0.06	.973
Hair washing frequency	-0.05	-0.13–0.02	.137	-0.08*	-0.15 0.01	.029
Hair straightening	0.02	-0.04-0.09	.492	-0.04	-0.11-0.02	.211
Sweating intensity	0.08*	0.01-0.14	.019	0.06 ^a	-0.01 - 0.12	.082
Collection calendar week	0.15***	0.09-0.22	<.001	-0.09**	-0.15 0.02	.007
Other substances (self-report)						
Frequent alcohol use (3 months)	0.01	-0.05-0.07	.741	0.01	-0.05-0.07	.759
Frequent smoking (3 months)	0.03	-0.03–0.09	.366	0.07*	0.01-0.13	.020
Contraceptives (reference: no contraceptive)						
progestin	-0.10***	-0.17 0.04	<.001	-0.05	-0.11 - 0.02	.140
estrogen-progestin	-0.12***	-0.19 0.05	< .001	-0.11**	-0.18 0.04	.002
Stress and lifestyle related						
Stressful life events (3 years)	0.07*	0.01-0.13	.033	0.07*	0.01-0.13	.033
Sport (hours per week)	0.06 ^a	0.00-0.13	.055	0.01	-0.06-0.07	.829
BMI	0.07*	0.00-0.13	.042	0.04	-0.02 - 0.11	.166

Note: Dummy variables were entered into the model simultaneously. ^a p < .1, *p < .05, ** p < .01 *** p < .001, CI= 95% confidence intervals. β = standardized beta coefficients, with bold values significant at p < .1.

Johnson-Ferguson et al 2024, PNEC


Specific predictors of hair cortisol in z-proso


Johnson-Ferguson et al 2024, PNEC


- Substance use confirmed by hair analysis
- Use of estrogen-based contraceptives
- Paracetamol in hair

roso

Johnson-Ferguson et al 2024, Arch Tox

Summary substance use

- Hair analysis can provide a useful quantitative measurement of intensity of substance use for many, but not all substances.
- Intra-individual (longitudinal) comparisons of substance concentrations in hair are feasible.
- Quantification of the actual use intensity seem to work very well for:
 - Cocaine
 - Opioids
 - Benzodiazepines
- Quantification of the actual use intensity works less well for:
 - Cannabinoids (only highly regular cannabis use is detected).
 - Amphetamines
 - ...but both can be at least treated as robust qualitative result (Y/N) (or as a ranking?).
- For other pharmacological substances quantification of use intensity (e.g., Ecstasy/MDMA) is likely possible, but should be used qualitative (Y/N) or like a rank scale (e.g., low, medium, high) in case of doubt.
- There are some important confounders and covariates (hair color, hair treatment, weight of hair sample).
- Look for metabolite ratios if possible (e.g., cocaine) to exclude external contamination.
- Have in mind that some substances might be impurities of others (e.g., ketamine might come along with Ecstasy use).
- Don't forget the individual sample length.... 1 cm = ~1 months

Summary steroid hormones

- Steroid hormones in hair have a high inter-individual variability.
- Quantification of steroid hormones might be influenced by several factors such as:
 - Sex (e.g., testosterone)
 - Hair colour
 - Hair treatment, such as hair washing intensity
 - Sweating intensity
 - Calendar week (UV light exposure?)
 - Contraceptives
 - Alcohol, smoking, cannabis, cocaine, MDMA...
 - Sport intensity
 - BMI
 - Weight of hair sample
- Cortisol/cortisone hair levels are associated with self-reported stress markers even tough weakly regarding the so far investigated items such as stressful life events in the last 3 years.

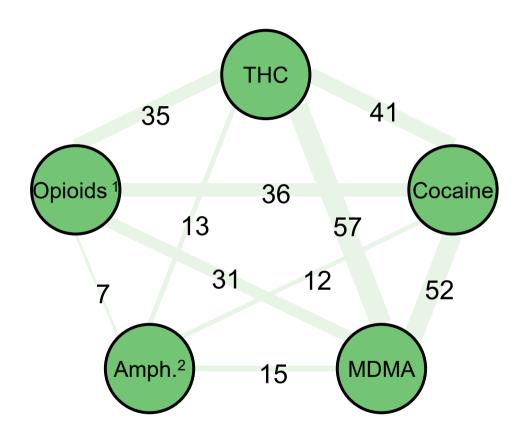
Acknowlegements

Jacobs Center Zurich for Productive Youth Development

Lilly Shanahan, University of Zurich Annekatrin Steinhoff, University of Berne Michelle Loher, University of Zurich Laura Bechtinger, University of Zurich Manuel Eisner, University of Cambridge Denis Ribeaud, University of Zurich

Ribeaud

Prof. Lilly Shanahan



A substance in hair rarely comes alone

Wave 8 (age 20, *n*=1,002)

n (%)	Users	Pure users		
ТНС	142 (14.2)	62 (6.2)		
Cocaine	95 (9.5)	25 (2.5)		
MDMA	122 (12.2)	35 (3.5)		
Opioids ¹	146 (14.6)	89 (8.9)		
Amph. ²	38 (3.8)	15 (1.5)		

¹ Codeine, opioid painkillers, and heroin

² (Meth-)amphetamine and medical stimulants (e.g., ADHD medication)

Specific predictors of hair testosterone

Bivariate linear regression models predicting testosterone, estimated separately for males and females.

	Testosterone (l in males	log)		Testosterone () in females	log)	
	β	CI	р	β	CI	р
Hair type and treatment		04				
Hair bleaching	0.04	-0.05-0.12	.430	-0.04	-0.12–0.05	.414
Hair colour (reference: brown hair)	0.04	-0:03-0.12	.430	-0.04	-0.12-0.03	.414
Blonde hair	-0.22***	-0.30 0.13	< .001	-0.14***	-0.23 0.05	< .001
Black hair	0.31***	-0.30 0.13 0.230.39	< .001	-0.14*	-0.23 0.05	.001
Hair colouring	0.02	-0.07-0.11	.671	-0.05	-0.14-0.04	.256
Hair tint	0.02	-0.07-0.11 -0.04-0.14	.265	-0.03	-0.14-0.04 -0.09-0.08	.250
Hair washing frequency	0.03	-0.06-0.12	.481	-0.06	-0.15-0.02	.157
Hair straightening	0.03	-0.06-0.12	.542	0.02	-0.06-0.11	.588
Sweating intensity	0.00	-0.09–0.09	.966	0.08 ^a	-0.01–0.17	.070
Collection calendar week	0.12**	0.03–0.21	.008	0.02	-0.07–0.10	.717
Other substances						
Frequent alcohol use (3 months)	0.01	-0.08 - 0.10	.840	-0.13**	-0.22 0.05	.002
Frequent smoking (3 months)	0.01	-0.08–0.09	.885	-0.01	-0.10-0.08	.810
Contraceptives (reference: no contraceptive)						
progestin	_		_	-0.05	-0.13- 0.04	.310
Estrogen-progestin	_	_	-	-0.19***	-0.280.10	< .001
Stress and lifestyle related						
Stressful life events (3 years)	0.11*	0.02–0.20	.014	0.03	-0.06-0.12	.470
Sport (hours per week)	0.06	-0.03-0.15	.179	-0.07	-0.15-0.02	.147
BMI	-0.01	-0.10-0.08	.778	0.17***	0.09-0.26	< .001

Note: Dummy variables were entered into the model simultaneously. ^a p < .1 * p < .05, ** p < .01 *** p < .001, CI= 95% confidence intervals. β = standardized beta coefficients, with bold values significant at p < .1.

Johnson-Ferguson et al 2024, PNEC

Transitions of highly regular cocaine users from age 20 to age 24

HAIR18_Cocaine_categories	HAIR22_Cocaine_ categories
Very strong, addicted (>10,000 pg/mg)	Very strong, addicted (>10,000 pg/mg)
Very strong, addicted (>10,000 pg/mg)	Very strong, addicted (>10,000 pg/mg)
Very strong, addicted (>10,000 pg/mg)	Moderate regular (1,000-5,000 pg/mg)
Very strong, addicted (>10,000 pg/mg)	Moderate regular (1,000-5,000 pg/mg)
Very strong, addicted (>10,000 pg/mg)	Moderate regular (1,000-5,000 pg/mg)
Very strong, addicted (>10,000 pg/mg)	Weak and regular (500-1,000 pg/mg)
Strong regular, likely addicted (5,000-10,000 pg/mg)	Moderate regular (1,000-5,000 pg/mg)
Strong regular, likely addicted (5,000-10,000 pg/mg)	NA
Strong regular, likely addicted (5,000-10,000 pg/mg)	NA

