

Examining the Development of Support for Violence Against Women and Violent Extremist Attitudes

Bettina Rottweiler, Amy Nivette, Paul Gill, Denis Ribeaud, & Manuel Eisner

Tallahassee yoga studio shooter shared misogynistic videos online and had a history of harassing women

Scott Beierle opposed interracial dating and used racist language when talking about black people

Mihir Zaveri, Julia Jacobs • Sunday 04 November 2018 16:22 GMT • . Comments

Context

Overlaps Between Violent Extremism, Violence against Women and Hypermasculinity

- VAW intersects with violent extremism 24% of Western lone-actor terrorists had a history in violence against women (Windisch, 2017)
- Almost 50% of male US violent far-right extremists committed domestic homicide (Scaptura et al., 2022)
- Of over 3,000 individuals referred to Prevent in the UK 21.1% demonstrated a history of intimate partner violence (CT Policing Headquarters, 2022)
- Over 40% of all public mass shootings in the U.S. between 1966 2018 were motivated by violent masculine norms and grievances against women (Silva et al., 2018)
- Domestic abuse and intimate partner violence have been identified as a warning sign for potential acts of targeted violence among men (NTAC, 2023)

Overlaps Between Violent Extremism, Violence against Women and Hypermasculinity

- Far-right, Islamist and Incel ideologies are grounded in patriarchal and misogynistic belief systems
- Threat from newly emergent extreme ideologies and online movements manosphere, incels and online influencers with an explicitly misogynist focus
- Manosphere fertile ground for radicalisation among vulnerable boys and men
- Violent attacks against women committed by incels and other misogynistic perpetrators labelled as "misogynistic extremism" (NTAC, 2023)

Do VAW and VEA co-develop? Do they follow a similar trajectory?

Rationale – Developmental Trajectories

'Parallel Latent Growth Curve Modelling' – joint growth trajectories of attitudes towards violence against women and support for violent extremism

■],,

Are violent masculine norms predictive of bivariate trajectories of VAW and VEA?

Study Variables

Violence legitimising norms of masculinity

"A man has to be able to hit someone when he is insulted."

Support for violence against women

"A man is allowed to beat his wife/female partner if she doesn't do what he wants"

Violent extremist attitudes

"Sometimes people have to resort to violence to defend their values, convictions or religious beliefs'

Variable	masc17	masc20	masc24	vaw17	vaw20	vaw24	vea17	vea20	vea24
masc17	-								
masc20	.65***	-							
masc24	.53***	.68***	-						
vaw17	.32***	.26***	.25***	-					
vaw20	.21***	.31***	.30***	.34***	-				
vaw24	.17***	.23***	.38***	.28***	.41***	-			
vea17	.39***	.32***	.30***	.22***	.20***	.15***	-		
vea20	.28***	.38***	.32***	.18***	.26***	.20***	.43***	-	
vea24	.12***	.20***	.27***	.09**	.15***	.22***	.36***	.49***	-

Analysis

Results – Parallel Latent Growth Curve Analysis among Males

Results Male Sample – PPLGCM

	Estimate	SE	CI lower	Cl upper	p-value	В
I(VEA)<>I(VAW)	0.068	0.013	0.043	0.093	<0.001	0.599
S(VEA)<>S(VAW)	0.001	<0.001	0.001	0.002	<0.001	0.763
I(VEA)<>S(VAW)	-0.005	0.002	-0.008	-0.001	0.016	-0.382
I(VAW)<>S(VEA)	-0.007	0.002	-0.011	-0.003	0.001	-0.438
I(VEA)<>S(VEA)	-0.005	0.005	-0.015	0.005	0.358	-0.185
I(VAW)<>S(VAW)	-0.004	0.003	-0.01	0.001	0.133	-0.565
						0 5)

Results Male Sample – Conditional PPLGCM

Time-invariant covariates	b	SE	CI lower	Cl upper	p-value	В
SES>I(VEA)	-0.002	0.001	-0.005	<0.001	0.079	-0.006
SES>I(VAW)	-0.002	0.001	-0.004	-0.001	0.013	-0.009
SES>S(VEA)	0.001	<0.001	0.001	0.001	<0.001	0.019
SES>S(VAW)	<0.001	<0.001	<-0.001	<0.001	0.132	0.007
Time-varying covariates	b	SE	Cl lower	Cl upper	p-value	В
Masculinity>VEA	0.126	0.016	0.095	0.158	<0.001	0.126
Masculinity>VAW	0.283	0.027	0.23	0.335	<0.001	0.283
Correlations	b	SE	Cl lower	Cl upper	p-value	В
Correlations I(VEA)<>I(VAW)	b 0.037	SE 0.010	Cl lower 0.017	Cl upper 0.056	p-value <0.001	B 0.416
Correlations I(VEA)<>I(VAW) S(VEA)<>S(VAW)	b 0.037 0.001	SE 0.010 <0.001	Cl lower 0.017 <0.001	Cl upper 0.056 0.001	p-value <0.001 0.005	B 0.416 0.575
Correlations I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW)	b 0.037 0.001 -0.003	SE 0.010 <0.001 0.002	Cl lower 0.017 <0.001 -0.006	Cl upper 0.056 0.001 <0.001	p-value <0.001 0.005 0.095	B 0.416 0.575 -0.264
Correlations I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW) I(VAW)<>S(VEA)	b 0.037 0.001 -0.003 -0.004	SE 0.010 <0.001 0.002 0.002	Cl lower 0.017 <0.001 -0.006 -0.007	Cl upper 0.056 0.001 <0.001 <0.001	p-value <0.001	B 0.416 0.575 -0.264 -0.301
Correlations I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW) I(VAW)<>S(VEA)	b 0.037 0.001 -0.003 -0.004	SE 0.010 <0.001 0.002 0.002	Cl lower 0.017 <0.001 -0.006 -0.007	Cl upper 0.056 0.001 <0.001 <0.001	p-value <0.001 0.005 0.095 0.042	B 0.416 0.575 -0.264 -0.301
Correlations I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW) I(VAW)<>S(VEA) I(VEA)<>S(VEA)	b 0.037 0.001 -0.003 -0.004 -0.002	SE 0.010 <0.001 0.002 0.002 0.005	Cl lower 0.017 <0.001 -0.006 -0.007 -0.011	Cl upper 0.056 0.001 <0.001 <0.001 0.007	p-value <0.001	B 0.416 0.575 -0.264 -0.301 -0.106

Results Male Sample – Conditional PPLGCM

Time-invariant covariates	b	SE	CI lower	Cl upper	p-value	В
SES>I(VEA)	-0.002	0.001	-0.005	<0.001	0.079	-0.006
SES>I(VAW)	-0.002	0.001	-0.004	-0.001	0.013	-0.009
SES>S(VEA)	0.001	<0.001	0.001	0.001	<0.001	0.019
SES>S(VAW)	<0.001	<0.001	<-0.001	<0.001	0.132	0.007
Time-varying covariates	b	SE	CI lower	Cl upper	p-value	В
Masculinity>VEA	0.126	0.016	0.095	0.158	<0.001	0.126
Masculinity>VAW	0.283	0.027	0.23	0.335	<0.001	0.283
Correlations	b	SE	CI lower	Cl upper	p-value	В
I(VEA)<>I(VAW)	0.037	0.010	0.017	0.056	<0.001	0.416
S(VEA)<>S(VAW)	0.001	<0.001	<0.001	0.001	0.005	0.575
I(VEA)<>S(VAW)	-0.003	0.002	-0.006	<0.001	0.095	-0.264
I(VAW)<>S(VEA)	-0.004	0.002	-0.007	<0.001	0.042	-0.301
I(VEA)<>S(VEA)	-0.002	0.005	-0.011	0.007	0.653	-0.106
I(VAW)<>S(VAW)	-0.004	0.003	-0.009	0.001	0.148	-0.566

Results – Parallel Latent Growth Curve Analysis among Females

Results Female Sample – PPLGCM

	Estimate	SE	CI lower	Cl upper	p-value	В
I(VEA)<>I(VAW)	0.019	0.005	0.01	0.029	<0.001	0.589
S(VEA)<>S(VAW)	<0.001	<0.001	<0.001	<0.001	0.025	0.423
I(VEA)<>S(VAW)	-0.001	0.001	-0.003	<0.001	0.087	-0.232
I(VAW)<>S(VEA)	-0.001	0.001	-0.003	<0.001	0.067	-0.437
I(VEA)<>S(VEA)	-0.004	0.004	-0.012	0.004	0.337	-0.322
I(VAW)<>S(VAW)	<0.001	0.001	-0.001	0.002	0.908	0.053
						o =) I .

Results Female Sample – Conditional PPLGCM

Time-invariant covariates	b	SE	CI lower	Cl upper	p-value	В
SES>I(VEA)	-0.001	0.001	-0.002	0.002	0.966	-0.001
SES>I(VAW)	<0.001	<0.001	-0.001	0.001	0.721	0.002
SES>S(VEA)	0.001	<0.001	0.001	0.001	<0.001	0.035
SES>S(VAW)	<0.001	<0.001	-0.001	<0.001	0.753	0.002
Time-invariant covariates	b	SE	CI lower	Cl upper	p-value	В
Masculinity>VEA	0.099	0.014	0.071	0.126	<0.001	0.099
Masculinity>VAW	0.200	0.023	0.155	0.244	<0.001	0.200
Time-invariant covariates	b	SE	CI lower	Cl upper	p-value	В
Time-invariant covariates I(VEA)<>I(VAW)	b 0.008	SE 0.004	Cl lower -0.001	Cl upper 0.016	p-value 0.069	B 0.334
Time-invariant covariates I(VEA)<>I(VAW) S(VEA)<>S(VAW)	b 0.008 <0.001	SE 0.004 <0.001	Cl lower -0.001 <0.001	Cl upper 0.016 <0.001	p-value 0.069 0.36	B 0.334 0.338
Time-invariant covariates I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW)	b 0.008 <0.001 -0.001	SE 0.004 <0.001 0.001	Cl lower -0.001 <0.001 -0.002	Cl upper 0.016 <0.001 0.001	p-value 0.069 0.36 0.402	B 0.334 0.338 -0.126
Time-invariant covariates I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW) I(VAW)<>S(VEA)	b 0.008 <0.001 -0.001 <0.001	SE 0.004 <0.001 0.001 0.001	Cl lower -0.001 <0.001 -0.002 -0.002	Cl upper 0.016 <0.001 0.001 0.001	p-value 0.069 0.36 0.402 0.717	B 0.334 0.338 -0.126 -0.175
Time-invariant covariates I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW) I(VAW)<>S(VEA)	b 0.008 <0.001 -0.001 <0.001	SE 0.004 <0.001 0.001 0.001	Cl lower -0.001 <0.001 -0.002 -0.002	Cl upper 0.016 <0.001 0.001 0.001	p-value 0.069 0.36 0.402 0.717	B 0.334 0.338 -0.126 -0.175
Time-invariant covariates I(VEA)<>I(VAW) S(VEA)<>S(VAW) I(VEA)<>S(VAW) I(VAW)<>S(VEA) I(VEA)<>S(VEA)	b 0.008 <0.001 -0.001 <0.001 <0.001	SE 0.004 <0.001 0.001 0.001 0.004	Cl lower -0.001 <0.001 -0.002 -0.002 -0.008	Cl upper 0.016 <0.001 0.001 0.001 0.007	p-value 0.069 0.36 0.402 0.717 0.946	B 0.334 0.338 -0.126 -0.175 -0.045

Results Female Sample – Conditional PPLGCM

Time-invariant covariates	b	SE	CI lower	Cl upper	p-value	В
SES>I(VEA)	-0.001	0.001	-0.002	0.002	0.966	-0.001
SES>I(VAW)	<0.001	<0.001	-0.001	0.001	0.721	0.002
SES>S(VEA)	0.001	<0.001	0.001	0.001	<0.001	0.035
SES>S(VAW)	<0.001	<0.001	-0.001	<0.001	0.753	0.002
Time-invariant covariates	b	SE	CI lower	Cl upper	p-value	В
Masculinity>VEA	0.099	0.014	0.071	0.126	<0.001	0.099
Masculinity>VAW	0.200	0.023	0.155	0.244	<0.001	0.200
Time-invariant covariates	b	SE	Cl lower	Cl upper	p-value	В
I(VEA)<>I(VAW)	0.008	0.004	-0.001	0.016	0.069	0.334
S(VEA)<>S(VAW)	<0.001	<0.001	<0.001	<0.001	0.36	0.338
I(VEA)<>S(VAW)	-0.001	0.001	-0.002	0.001	0.402	-0.126
I(VAW)<>S(VEA)	<0.001	0.001	-0.002	0.001	0.717	-0.175
I(VEA)<>S(VEA)	<0.001	0.004	-0.008	0.007	0.946	-0.045

Discussion

- Support for VAW and violent extremist attitudes co-develop
- Effects of violent masculine norms on VAW and violent extremist attitudes were observed over time among both genders
- Directionality? Mechanisms? Moderators?
- Incorporating gendered factors into violent extremist risk assessment tools
- Initial evidence to inform programmatic approaches to prevent/ counter genderbased as well as extremist violence

Thank you

Bettina.Rottweiler.16@ucl.ac.uk

😏 @b_rottweilerUCL